Complex Analysis: Midterm Exam

Aletta Jacobshal 01, Monday 14 December 2015, 09:00-11:00
Exam duration: 2 hours

Instructions - read carefully before starting

- Do not forget to very clearly write your full name and student number on each answer sheet and on the envelope. Do not seal the ennvelope.
- 10 points are "free" for handing-in the assignment. There are 5 questions and the total number of points is 100. The exam grade is the total number of points divided by 10 .
- Solutions should be complete and clearly present your reasoning.

Question 1 (20 points)

Consider the function

$$
f(z)=\frac{y-1}{x^{2}+(y-1)^{2}}+i \frac{x}{x^{2}+(y-1)^{2}},
$$

where $z=x+i y$.
(a) (10 points) Prove that $f(z)$ is analytic for $z \neq i$.
(b) (10 points) Write $f(z)$ as a function of z.

Question $2(20$ points)

Consider the two smooth arcs γ_{1} and γ_{2} shown in Figure 1. The arc γ_{1} is a straight line from the point $-i$ to the point $1+i$ and the arc γ_{2} is a smooth curve from $1+i$ to 2 for which $y=(x-2)^{2}$.

Figure 1: Smooth arcs γ_{1} and γ_{2} for Question 2.
(a) (10 points) Parameterize the two smooth arcs.
(b) (10 points) Compute the integral

$$
\int_{\gamma_{1}} \bar{z}^{2} d z
$$

Question 3 (20 points)

Compute the value of the integral

$$
\int_{\Gamma} \frac{\cos (\pi z)}{(z-i)(z-3)^{2}} d z
$$

where Γ is the closed contour shown in Figure 2. Give the result as a complex number in Cartesian form $x+i y$.

Figure 2: Contour Γ for Question 3.

Question 4 (20 points)

Consider the function

$$
f(z)=e^{\frac{1}{2} \log (1-z)} e^{\frac{1}{2} \mathcal{L}_{0}(1+z)},
$$

where $\mathcal{L}_{0}(z)$ is the branch of the logarithm function with a branch cut along the positive real axis $[0, \infty)$ and $\log (z)$ is the principal value of the logarithm. Show that $f(z)$ is continuous at z in the interval $(1, \infty)$ on the real axis.

Question 5 (10 points)

Consider an entire function $f(z)$ such that its absolute value is bounded below by a positive number, that is, $|f(z)|>M>0$ for all $z \in \mathbb{C}$. Show that $f(z)$ is constant.

End of the exam (Total: 90 points)

